The screencast below discusses combinging dataframes from disparate sources in R Programming. Full screen is probably best. The code for the screencast is below. Data files for this screencast can be found here.
This is the code that accompanies the screen cast above.
# data science exercise combing dataframes from different sources
# data science exercise using lattice graphics system
list.files()
list.files(pattern="csv")
USPerInc.1992.2011 <- data.frame(read.csv("PersonalIncomeDisposition1992-2011.csv"))
USResidentialAsset.1992.2011 <- data.frame(read.csv("Current-Cost_Net_Stock_Residential_Fixed_Assets.csv"))
USEmployPop.1992.2011 <- data.frame(read.csv("BLS_Census.csv"))
USComb <- cbind(USPerInc.1992.2011[c(1,6)])
names(USComb)
USComb <- cbind(USResidentialAsset.1992.2011[c(2,3,4,8)])
names(USComb)
USComb <- cbind(USPerInc.1992.2011[c(1,6)])
USComb <- cbind(USComb,USResidentialAsset.1992.2011[c(2,3,4,8)])
matrix(names(USComb))
USComb1 <- data.frame(read.csv("BLS_Census.csv"))
USComb1 <- cbind(USComb1,(data.frame(read.csv("PersonalIncomeDisposition1992-2011.csv"))))
USComb1 <- cbind(USComb1,(data.frame(read.csv("Current-Cost_Net_Stock_Residential_Fixed_Assets.csv"))))
names(USComb1)
grep(pattern="Year",(as.character(names(USComb1))),value=TRUE)
grepl(pattern="Year",(as.character(names(USComb))))
matrix(grepl(pattern="Year",(as.character(names(USComb1)))))
USComb1 <- cbind(USComb1[c(-9,-20)])
matrix1 <- matrix(sapply(USComb,class))
matrix1 <- cbind(matrix1,matrix(names(USComb)))
matrix2 <- matrix(sapply(USComb1,class))
matrix2 <- cbind(matrix2,matrix(names(USComb1)))
matrix1
matrix2
dd <- USComb1
str(dd)
No comments:
Post a Comment